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ABSTRACT
In the Software Defined Networking (SDN) and Network Function

Virtualization (NFV) era, it is critical to enable dynamic network

access control. Traditionally, network access control policies are

statically predefined as router entries or firewall rules. SDN en-

ables more flexibility by re-actively installing flow rules into the

switches to achieve dynamic network access control. However,

SDN is limited in capturing network anomalies, which are usually

important signs of security threats. In this paper, we propose to

employ anomaly-based Intrusion Detection System (IDS) to capture

network anomalies and generate SDN flow rules to enable dynamic

network access control. We gain the knowledge of network anom-

alies from anomaly-based IDS by training an interpretable model

to explain its outcome. Based on the explanation, we derive access

control policies. We demonstrate the feasibility of our approach

by explaining the outcome of an anomaly-based IDS built upon a

Recurrent Neural Network (RNN) and generating SDN flow rules

based on our explanation.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Net-
works → Programmable networks.
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1 INTRODUCTION
The emerging SDN and NFV network paradigms introduce signifi-

cant flexibility to the network, which calls for a more flexible way to

enforce access control policies on the network (a.k.a., dynamic net-

work access control). A significant body of work has made efforts to
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enable dynamic access control using SDN, such as SDN firewall [15],

virtual firewall [11], and general network control framework [8].

However, prior work assumes the access control policies are defined

by the network administrators based on their knowledge about the

network. Those access control policies fail to consider any emerg-

ing network anomalies – network activities that have not been seen

before. Those anomalies are especially dangerous because they are

likely to associate with unknown vulnerabilities in the network or

zero-day security threats.

Anomaly-based IDS is known to be powerful because of its ability

to uncover novel security threats. However, instead of specifically

pinpointing what threats are detected, anomaly-based IDS only

outputs the level of deviation, which is obscure and has little help

to generate access control policies. To fully utilize the outcome of

anomaly-based IDS for dynamic network access control, we must

bridge the semantic gap between the outcome of anomaly-based

IDS and the access control policies we want to generate.

The heart of anomaly-based IDS is to model the normal pattern

of a network. Those models are usually implemented via machine

learning approaches [20, 21, 23]. Fortunately, there exists a large

body of recent work that aims to explain machine learning mod-

els [7, 10, 13, 14, 17]. There are two major mechanisms that have

been used to explain machine learning models. The whitebox mech-

anism assumes the internal characteristics of a model are available

and augments the model with the ability to produce explanations

of each prediction. The blackbox mechanism treats the model as

a black box and explains the outcome through approximating the

decision boundary around the outcome. By explaining a machine

learning model, one can get better understanding of the whole

model (global explanation) or gain knowledge about the reason

behind the decision made by a model on a specific input (local

explanation). Machine learning model explanation seems to be a

promising solution that can help us to generate network access

control policies from an anomaly-based IDS.

In this paper, we consider anomaly-based IDS as a blackbox

model that can predict whether an input is a normal instance or a

deviation. Given an input, we explain the outcome of this blackbox

model if the outcome indicates a deviation. Then a network access

control policy is generated according to the explanation of that out-

come. To explain the outcome of a blackbox model, we generate the

samples that are “close” to the given input. Then we use regression

model with fused lasso to approximate the local decision bound-

ary of the blackbox model around the given input as described in

LEMNA [14]. The explanation consists of the scores that indicate

how significantly each individual feature contributes to the pre-

diction against the given input. The features are then sorted based

on their importance. We select top-k features to aid generating

network access control policies, where k is a hyper-parameter.
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Figure 1: To obtain an explanation e of the outcome of a pre-
dictive model p against a given input x , a model l is devel-
oped to imitate the local prediction of p around x and an
explanation logic el is used to reason over l and x .

The contributions of this paper are as follows.

• We investigate the approach to explaining the outcome of

anomaly-based IDS through local approximation of decision

boundary of the anomaly-based intrusion detection model.

• We demonstrate the feasibility of our approach with a case

study through generating a network access control policy

based on the outcome explanation of an anomaly-based IDS.

The rest of the paper is organized as follows. In Section 2, we

provide the background and describe the details of our technical

approach. In Section 3, a case study is presented to demonstrate

the feasibility of our proposed approach. we conclude and discuss

our future work in Section 4.

2 METHODOLOGY
2.1 Background
Formally, a predictive model for anomaly-based IDS is a function

p : X (m) → Y , which takes an instance x ∈ Xm
withm features as

input and outputs a score y ∈ Y indicating the deviation between

the input instance and a normal instance. Conventionally, p(x) = y
denotes that y is an outcome of the prediction of p corresponding

to the input x . The task of explaining an outcome of a predictive

model can be defined as follows. Given an input x and a predictive

model p, we need to find an interpretable model l that imitates the

prediction of p locally against x . Then, an explanation e is obtained
through some explanation logic el reasoning over x and l . Figure 1
illustrates each concept in the aforementioned process.

There are two key components in the above process: the inter-

pretable model and the explanation logic. There is a set of models,

such as decision tree [12, 16] and linear models [14, 17], believed to

be easily understandable and interpretable for humans. For explana-

tion logic, there exist three major techniques: saliency map [22, 24],

decision rules [18], and feature importance [14, 17].
In this work, we employ linear models to approximate the lo-

cal decision boundary of the original predictive and obtain the

explanation through feature importance.

2.2 Challenge and Technical Overview
Despite SDN introduces great programmability to the network, it is

still limited in considering network anomalies when controlling the

network. This limitation is caused fundamentally by the fact that

Mirrored 
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IDS

Outcome 
Explanator

Policy 
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IDS 
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Outcome 
Explanation

Access Control PolicySDN Flow Rule

Figure 2: A High-level view of our overall approach that
achieves dynamic nework access control.

the SDN controller is not designed to analyze the network traffic

in depth like IDS.

To overcome this shortcoming, an anomaly-based IDS is intro-

duced to operate on the data plane to directly analyze the traffic

in depth and report any network anomalies to aid the SDN con-

troller controlling the network. Deriving access control policies

from the results of a signature-based IDS [1, 2] could be straight

forward since the signatures are working in an if-match-then-action
manner [19], which can be easily mapped to an access control

policy. However, there exist several limitations of signature-based

IDS, including being unable to detect zero-day security threats and

suffering from signature base explosion.

In the following, we achieve dynamic network access control

through the combination of SDN and anomaly-based IDS. Figure 2

depicts the high-level idea of our overall approach. We mirror a

copy of network traffic from the SDN switch to an anomaly-based
IDS. If the outcome of the anomaly-based IDS indicates an anomaly,

it is sent to the outcome explanator to get explained. The explanation
of the outcome is then processed by the policy generator to generate
the access control policy. The generated access control policy can

be sent to the SDN controller via a network control framework [8].

The SDN controller finally installs SDN flow rules into the SDN

switch according to the access control policy.

2.3 Technical Details
Existing work has already demonstrated how to develop anomaly-

based IDS using Deep Neural Network (DNN) [20, 21, 23], and a

network control framework has been presented in [8] to allow IDS

communicate with the SDN controller. Therefore, our focus is the

outcome explanation and policy generation.

Anomaly-based IDS Outcome Explanation. As is shown in

Figure 1, outcome explanation consists of two major steps: i) train-
ing a model to approximate the local decision boundary of the

target predictive model; and ii) reasoning on the trained model and

the given input based on some explanation logic.

To approximate the local decision boundary of the target predic-

tive model, we first synthesize a set of data samples around x as

described in LEMNA [14] and utilize the target predictive model to

predict the label for each synthetic data sample. Then we can use

those synthetic data samples to train a linear regression model l
defined as:

l(x) = αx + ϵ (1)
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where ϵ is the error term, and x is a synthetic data sample

(x1,x2, ...,xM )T containingM features. The vectorα = (α1,α2, ...,αM )
contains the coefficients of the linear model. However, a standard

linear regression model cannot approximate a local decision bound-

ary correctly for an anomaly-based IDS because the anomaly-based

IDS makes decision considering dependencies across multiple fea-

tures. We introduce the fused lasso, a penalty term that can capture

dependencies between features. The loss function L of the linear

regression model can be defined with fused lasso as:

L(l(x),y) =
N∑
i=1

∥ αxi − yi ∥ (2)

subject to

M∑
j=2

∥ α j − α j−1 ∥≤ S (3)

wherexi is the i-th synthetic data sample represented as a feature

vector. N is the number of synthetic data samples. yi is the label
of xi . ∥ · ∥ is the L2-norm distance between the model prediction

and the true label. S is a hyper-parameter controlling the threshold

of dissimilarity of the coefficients assigned to adjacent features.

Minimizing Equation (2) under the constrain of Equation (3), we

get the linear regression model l that approximate the decision

boundary of anomaly-based IDS around the given input x .
After we have developed a linear regression model that approxi-

mates the local decision boundary of anomaly-based IDS, we can

use the coefficients of the linear model to derive the explanation.

Assigning larger coefficient to a feature when the linear regression

model is trained means this feature contributes greater to the pre-

diction of the linear model, thus has a greater impact to the decision

made by anomaly-based IDS. Therefore, the importance of each

feature provides an explanation to the outcome of anomaly-based

IDS corresponding to a specific input.

Access Control Policy Generation. A network access control

policy consists of two components: filters and actions. It can be

defined as <filters, actions>. The filters are responsible for selecting
which network entity, such as host, flow, connection, and packet, the

access control policy is applied to. The actions define the actions
that will be taken against the entity selected by the filters. For
simplicity, let’s assume the actions include allow or deny. Note that
one can easily extend the actions by adding more action types.

To generate a network access control policy, one needs to fill the

two components. The filters are filled with the values of the corre-

sponding fields of the input instance, such as source IP, destination
IP, source port, and destination port. In addition, some fields of the

filters are obtained according to the importance of the fields in the

input instance. For example, if the important features indicate that

the SYN flag is a major cause of the anomaly, then the SYN flag is

set in the filters of the access control policy. If some features that

are not so important to the outcome, we may remove those fields

from the filters. For example, if the explanation believes that the

protocol type has low importance to the anomaly, we will remove

the protocol type, such as TCP, UDP, and ICMP, from the filters
using a wildcard instead. The actions indicate what actions will be
taken to the network traffic selected by the filters.

No. Features Types No. Features Types

1 duration cont. 22 is_guest_login cont.

2 protocol_type symb. 23 count cont.

3 service symb. 24 srv_count cont.

4 flag symb. 25 serror_rate cont.

5 src_bytes cont. 26 srv_serror_rate cont.

6 dst_bytes cont. 27 rerror_rate cont.

7 land cont. 28 srv_rerror_rate cont.

8 wrong_fragment cont. 29 same_srv_rate cont.

9 urgent cont. 30 diff_srv_rate cont.

10 hot cont. 31 srv_diff_host_rate cont.

11 num_failed_logins cont. 32 dst_host_count cont.

12 logged_in cont. 33 dst_host_srv_count cont.

13 num_compromised cont. 34 dst_host_same_srv_count cont.

14 root_shell cont. 35 dst_host_diff_srv_rate cont.

15 su_attempted cont. 36 dst_host_same_src_port_rate cont.

16 num_root cont. 37 dst_host_srv_diff_host_rate cont.

17 num_file_creations cont. 38 dst_host_serror_rate cont.

18 num_shells cont. 39 dst_host_srv_serror_rate cont.

19 num_access_files cont. 40 dst_host_rerror_rate cont.

20 num_outbound_cmds cont. 41 dst_host_srv_rerror_rate cont.

21 is_host_login cont.

Table 1: Features of NSL-KDD dataset

3 CASE STUDY
3.1 Anomaly-based IDS
We follow [23] to build an anomaly-based IDS with RNN and use

NSL-KDD [5] as the benchmark dataset. Compared with the original

KDD dataset [3], NSL-KDD has solved two major issues. The first

issue is the huge number of redundant records, which make the

classifier favor more frequent records and ignore the infrequent

records. The second issue is thatNSL-KDD labels the records inKDD
dataset with different difficulty levels. For each record there are 41

features as shown in Table 1. We use one-hot encoding to convert

the three symbolic features into numeric form, because our RNN

model accepts a numeric vector as its input. After the preprocessing

we convert 41 dimensional records into 122 dimensional vectors.

We use Keras [4] to build our RNN model, with TensorFlow [6] as

backend. We employ SimpleRNN to construct the hidden layers and

add one Normalization layer to the model. After training and testing

we get an anomaly-based IDS with sufficient detection accuracy.

3.2 Outcome Explanation
We follow [14] to construct an interpretable model and obtain an

explanation to illustrate why each record is classified as normal or

abnormal.

In our experiment we use Neptune attack [9] as a test case. This

attack is also known as a half opened TCP SYN attack. The purpose

of this attack is to exhaust the TCP server resources and reject any

new connections from normal TCP clients. The Neptune records
used as given inputs in our experiment are shown below.

Record1: (0, tcp,private, S0, ..., 255, 20, 0.08, 0.07, 0, 0, 1, 1, 0, 0)
Record2: (0, tcp, imap4,RE J , ..., 255, 17, 0.07, 0.07, 0, 0, 0, 0, 1, 1)

There are two major steps in our experiment. First we generate a

set of record samples around the given input and use those records

and their classification labels to train an interpretable model. Then

the interpretable model assigns different important scores to all 41

features according to their coefficients. In Table 2, features with

different important scores are marked with different colors. We

choose the top-4 most important features as our explanation. The
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Feature dur. proto. service flag ... dsthost_serror_rate* dsthost_srv_serror_rate* dsthost_rerror_rate* dsthost_srv_rerror_rate*

Record1 0 tcp private S0 ... 1 1 0 0

Record2 0 tcp imap4 REJ ... 0 0 1 1

Table 2: Explanation for Neptune SYN-FLOOD attack. The outcome explanation marks the most important feature as red ,
followed by orange , yellow , lime , cyan . The top-4 features are marked with*.

(dst_host_serror_rate) and (dst_host_srv_serror_rate) features rep-
resent the percentage of connections that have syn errors. The

(dst_host_rerror_rate) and (dst_host_srv_rerror_rate) features rep-
resent the percentage of connections that have reject errors. In

reality, Neptune is a typical SYN FLOOD attack, which is usually

fingerprinted by both syn and reject errors. This knowledge is

identical to our explanation, thus validates that our anomaly-based

IDS is trustworthy and the explanation is correct.

3.3 Policy Generation
From the above explanationwe can see that the key features of those

abnormal records are highly related to the SYN field. To prevent this

type of attacks we can generate a policy with deny action for those

instances with SYN features. Each record in the NSL-KDD dataset

represents one connection. Each connection can be identified by

the source and destination IPs, ports and protocol types
1
. Below

is an access control policy generated according to our explanation

that drops the network packets related to the Neptune attack.

<filters=(src_ip=192.168.1.2, dst_ip=192.168.1.3, ip_proto=6,

tcp_flags=0x02), actions=(drop)>

The source IP, destination IP, and the protocol type can be derived

from the abnormal connection record. Worth noting, the tcp_flags
field in the filters is set to 0x02 (SYN flag set) because the features

included in the explanation are all related to SYN. This policy will

be sent to the SDN controller, which then generates and installs

corresponding SDN flow rules into the SDN switch to achieve

dynamic network access control.

4 CONCLUSION AND FUTUREWORK
This paper introduces a method to explain the outcome of anomaly-

based IDS via an interpretable model and generate the network

access control policies based on the explanation. In our case study,

we show that the proposed method produces trustworthy outcome

and is useful to generate policies for dynamic network access con-

trol.

In our future work, we will investigate better explanation ap-

proaches to handle the dependency among multiple records to

improve our explanation accuracy. In addition, the policy gener-

ation process should be formalized to enable full automation. We

will also test on real-world network traffic considering different

attack types.
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